Linear Algebra and Complex Analysis

- 1.1 Course Number: MA 211
- 1.2 Contact Hours: 2-1-0 Credits: 8
- 1.3 Semester-offered: 2nd Year -Odd
- 1.4 Prerequisite: Real Analysis & Calculus
- 1.5 Syllabus Committee Member: Dr. Manoj K Rajpoot (Convener), Dr. Chanchal Kundu and Dr. Alpesh Kumar
- 2. **Objective:** To fulfill the fundamental requirements of knowledge of Mathematics for learning Science and Engineering subjects.
- 3. Course Content:

Unit-wise distribution of content and number of lectures

Unit	Topics	Sub-topic	Lectures
1	Matrix algebra, Vector Space and Linear Transformations	Introduction to matrix algebra. Vector spaces and linear transformation: Vector spaces and subspaces, linear dependence, linear span, bases, dimensions, sum and direct sum of spaces. Inner product, norm, Gram-Schmidt orthogonalization process. Linear transformations, kernel and image, rank, nullity, matrix associated with linear transformation, change of bases.	11
2	Eigenvalues and Eigenvectors	Characteristic equation, eigenvalues and eigenvectors, Cayley-Hamilton theorem, properties of eigenvalues and eigenvectors of symmetric, orthogonal, Hermitian and unitary matrices, diagonalization of matrices.	5
3	Complex Algebra and Analytic Functions	Algebra of complex numbers, function of a complex variable, limit, continuity and differentiability, Analytic functions, Cauchy-Riemann equations, Harmonic functions.	6
4	Complex Integrations	Line and Contour integrals, Cauchy's theorem and Cauchy's integral formula for simply and multiply connected regions, Morera's theorem, power series, zeros and singularities of a complex function, residues.	6
		Total	28

4. Readings

4.1 Textbook:

- *i.* Numerical Linear Algebra by J. H. Kwak and S. Hong; Birkhäuser Publisher.
- *ii. Linear Algebra and its Applications* by G. Strang; Cengage Learning.
- *iii.* Complex Variables and Applications by J. W. Brown and R.V. Churchil; McGraw-Hill Education.

4.2 Reference books:

- *i.* Advanced Engineering Mathematics by E. Kreyszig. Wiley-India Ed.
- *ii. Linear Algebra* by Kenneth Hoffman and Ray Kunze: PHI publication.

5 Outcome of the Course:

Students will learn about the fundamental Mathematics, which will foster the mathematical base for the understanding of Science and Engineering concepts.